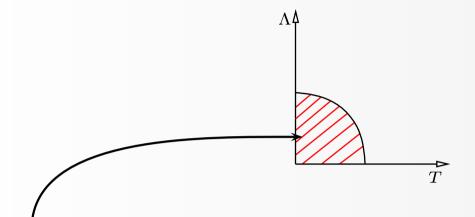


funRG at all scales: the charge-density wave problem

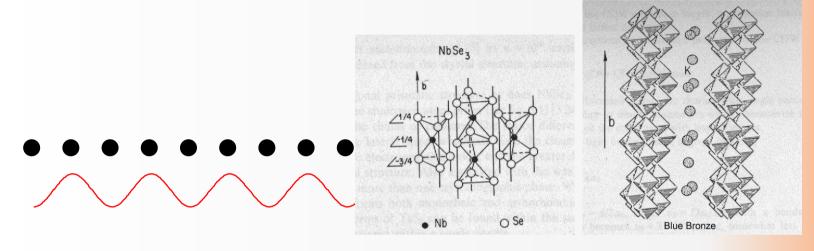
Roland Gersch, Carsten Honerkamp¹, Daniel Rohe², and Walter Metzner

Max Planck Institute for Solid State Research, Stuttgart



¹now Würzburg ²now Paris

- This region used to be inaccessible to funRG techniques.
- funRG techniques used to be unable to reproduce mean-field results for mean-field-exact models.


Here, we employ an improved funRG (Katanin scheme) and an initial symmetry-breaking field in a charge-density-wave system.

 1d atomic lattice: oscillating electron density at low temperatures due to Peierls distortion.

Images from Grüner and Zettl, 1984

• CDWs are experimentally observed in various compounds, e.g. NbSe₃, TaS₃, blue bronze $(K_{0.3}MoO_3)$, $(TaSe_4)_2I$.

Transition temperatures: from $\frac{24K}{\text{up to}}$ (Li_{0.9}Mo₆O₁₇)

für Festkörperforschung

One-dimensionality arises from the crystal structure.

Formal Matters

• We start from a model where particles can hop and repeleach other: $H' = -t \sum_i (c_i^{\dagger} c_{i+1} + h.c.) + U_0 \sum_i n_i n_{i+1}$.

• Leadingly divergent at half-filling: π -transferring processes that generate the CDW.

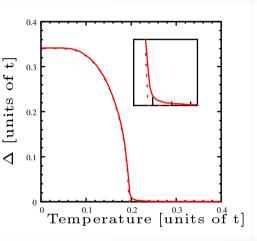
$$H = \sum_{k} \varepsilon_{k} n_{k} - \frac{U_{0}}{N} \sum_{k,k'} c_{k}^{\dagger} c_{k+\pi} c_{k'}^{\dagger} c_{k'+\pi}$$

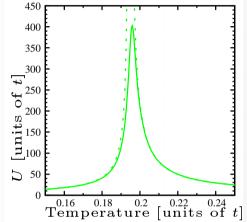
- Thermodynamic limit, half-filling.
- Δ/U_0 : amplitude of the density wave. Referred to as gap, off-diagonal self-energy, pairing field or order parameter. U: vertex, effective interaction, effective coupling or four-point-function.

 Δ and U take real values and depend only on Λ and T.

Exact Diagrammatics

 Exact in the thermodynamic limit: derivation of the gap equation by resummation.


• Likewise, we can resum for the effective interaction.



Exact Results

 Exact in the thermodynamic limit: derivation of the gap equation by resummation.

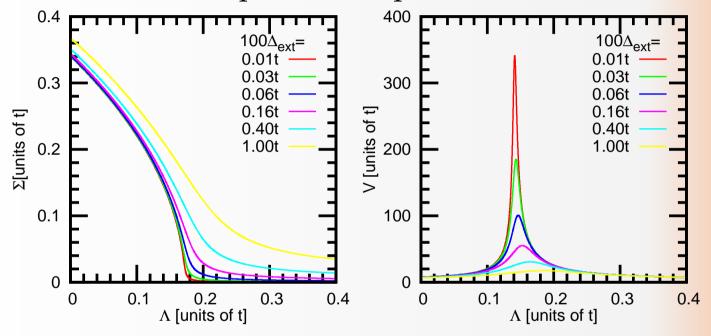
$$U = \frac{U_0}{1 - U_0 \text{Bubble}}$$

- Likewise, we can resum for the effective interaction.
- We introduce a small initial gap. The phase transition is "smeared out" and the singularity of the effective interaction is regularized.

funRG equations

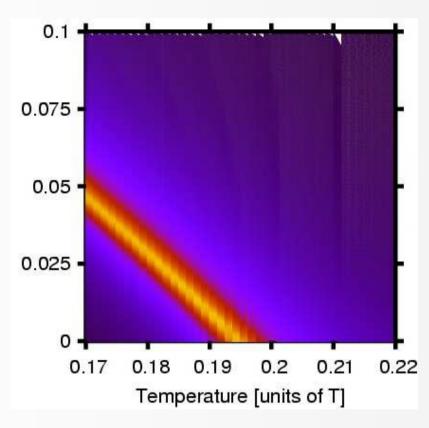
Vertex flow equation from Bethe-Salpeter equation:

• Gap flow equation from gap equation, $\mathbb{S} := -\mathbb{G} \frac{d}{d\Lambda} \mathbb{G}_0^{-1} \mathbb{G}$:


$$\mathbb{S} = \mathbb{S} + \mathbb{S} = \mathbb{S} = \mathbb{S} + \mathbb{S} = \mathbb{S} + \mathbb{S} = \mathbb{S} + \mathbb{S} = \mathbb{S} = \mathbb{S} + \mathbb{S} = \mathbb{S} + \mathbb{S} = \mathbb{S} = \mathbb{S} = \mathbb{S} + \mathbb{S} = \mathbb{S} = \mathbb{S} = \mathbb{S} = \mathbb{S} = \mathbb{S} + \mathbb{S} = \mathbb{S} =$$

Exact Results (funRG)

• The sub- T_c flows of the effective interaction and the gap resemble the temperature dependences.



- Increasing the initial gap suppresses the effective interaction flow maximum and furthers the smearing of the transition.
- The final value of the self-energy changes by only 10% while the initial gap varies over two orders of magnitude!

Temperature dependence of the effective interaction flow around the critical temperature: The flow maximum is pushed linearly towards zero scale by increasing temperature.

Summary and Outlook

- Katanin-funRG + small external gap reproduce exact results for self-energy and effective interaction in the CDW-model at all temperatures. The scheme is implemented numerically at fairly high precision.
- We will next look at models with two interaction processes. The medium-long term goal is to describe competing instabilities. This appears feasible away from critical points since we can strongly suppress the effective interaction flow without contracting a large error in the $\Lambda=0$ results.

